The University of Oxford’s Department of Materials – Oxford Materials – approached LG Motion to design and manufacture an XYZ gantry positioning and motion control system for a research project using innovative spray deposition to manufacture thin and think film energy storage electrodes and devices.
The aim of the project is to demonstrate benefits over existing manufacturing processes and develop new processing technologies that offer cost-effective scaling to the near-industrial, and then full industrial use.
The science
The research project, ‘Spray processed electrodes in new materials for energy storage applications’, is led by Professor Patrick Grant and explores layer-by-layer spray forming of electrodes for use as electrochemical ‘supercapacitors’.
The technique is to develop smaller, more efficient, longer life storage solutions for mobile phones, computers and other devices than current technologies.
The objective was to provide a cost-competitive mechanical positioning and motion control system that would enable a scanned area of 300 mm x 300 mm in the horizontal plane, with a vertical axis to position the spray head over 200 mm.
The objective for the Scientists was to increase flexibility and research throughput in the laboratory. The design specification called for an XYZ positioning rig with the ability to load multiple spray heads up to 3 kg mass within an area of 300mm x 300mm in the horizontal plane and 200 mm in the vertical plane.
The engineered solution
The custom-built spray deposition positioning system is based around modular products that have been integrated to match customer requirements. The system specification called for relatively low speeds, low duty cycle and medium precision to perform the required scanning with a load of up to 3 kg.
To maintain budget constraints, an open loop stepper motor based positioning system was used, centred on LG Motion’s linear dovetail slides, the XSlide range powered by high-torque stepper motors and uses standard bracketry and modular mounting to maintain overall flexibility.
To improve the consistency of tests and ease of use for multiple students and researchers, LG Motion also provided a simple GUI front-end program that allowed simple entry of scan patterns and spray timings without the need to program.
The components
The custom-built spray deposition positioning system is based around modular products that have been integrated to match customer requirements. The system specification called for relatively low speeds, low duty cycle and medium precision to perform the required scanning with a load of up to 3 kg.
To maintain budget constraints, an open loop stepper motor based positioning system was used, centred on LG Motion’s linear dovetail slides, the XSlide range powered by high-torque stepper motors and uses standard bracketry and modular mounting to maintain overall flexibility.
To improve the consistency of tests and ease of use for multiple students and researchers, LG Motion also provided a simple GUI front-end program that allowed simple entry of scan patterns and spray timings without the need to program.
The result
During the design approval, manufacture and commissioning, LG Motion worked closely with scientists at Oxford Materials to ensure that the spray deposition research positioning system met all development and operational requirements.
As with many development processes, flexibility was a key factor in system design. The mechanical assembly is modular and the Arcus controller offers easy and straightforward programming via Ethernet. This programming flexibility allows Oxford Materials to adapt the system as the research project progresses, including the ability to add encoder feedback for position verification should they wish to increase the system repeatability in the future.
We worked closely with Oxford Materials during all phases of this successful project and delivered the complete system, pre-wired and fully tested for use on the project.
If you are looking for a dedicated partner to work alongside for your electro-mechanical motion project, get in touch.
We’ll work with you to develop the best solution for your specific challenge, no matter how complicated.
Arrange a visit and meet the team: